## Review 2.6-2.8

Solve the equation algebraically. Identify any extraneous solutions.

$$x + 2 = \frac{15}{x}$$

Solve the equation algebraically. Identify any extraneous solutions.

$$\frac{3x}{x+5} + \frac{1}{x-2} = \frac{7}{x^2 + 3x - 10}$$

Solve the equation algebraically. Identify any extraneous solutions.

$$\frac{x-3}{x} - \frac{3}{x+1} + \frac{3}{x^2 + x} = 0$$

Solve the polynomial using factoring and a sign chart

$$(x+1)(x^2-3x+2)<0$$

Determine the real values of x that cause the function to be zero, undefined, positive and negative

$$f(x) = \frac{\sqrt{x+5}}{(2x+1)(x-1)}$$

## Solve the polynomial using a sign chart

$$\frac{x^2 - 4}{x^2 + 4} > 0$$

Solve the polynomial using a sign chart

$$\frac{x^2 + 3x - 10}{x^2 - 6x + 9} > 0$$

Find the domain of the function f. Use limits to describe the behavior of f(x) at value(s) of x not in its domain.

$$f(x) = \frac{1}{x+3}$$

Describe how the graph of the given function can be obtained by transforming the graph of the reciprocal function g(x) = 1/x. Identify the horizontal and vertical asymptotes and use limits to describe the corresponding behavior. Sketch the graph.

$$f(x) = \frac{3x - 2}{x - 1}$$

## Evaluate the limit based on the graph shown







- A)
- Find the intercepts B) Find the asymptotes(HA or slant/Vertical)
- Find the domain D) Use limits to describe the end behavior.
- **Determine where the function is continuous**

$$f(x) = \frac{x^2 - x - 2}{x - 3}$$

- F) Use limits to describe the behavior at the vertical asymptote(s)
- G) Sketch a graph